Route to Topological Superconductivity via Magnetic Field Rotation
نویسندگان
چکیده
The verification of topological superconductivity has become a major experimental challenge. Apart from the very few spin-triplet superconductors with p-wave pairing symmetry, another candidate system is a conventional, two-dimensional (2D) s-wave superconductor in a magnetic field with a sufficiently strong Rashba spin-orbit coupling. Typically, the required magnetic field to convert the superconductor into a topologically non-trivial state is however by far larger than the upper critical field H(c2), which excludes its realization. In this article, we argue that this problem can be overcome by rotating the magnetic field into the superconducting plane. We explore the character of the superconducting state upon changing the strength and the orientation of the magnetic field and show that a topological state, established for a sufficiently strong out-of-plane magnetic field, indeed extends to an in-plane field orientation. We present a three-band model applicable to the superconducting interface between LaAlO3 and SrTiO3, which should fulfil the necessary conditions to realize a topological superconductor.
منابع مشابه
Rotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by upper-critical field experiments
Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotro...
متن کاملSupercurrent in the quantum Hall regime.
A promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall (QH) effect. Despite this potential, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has been challenging to observe. We demonstrate the existence of a distinct supercurrent mechanism in encapsulated graphene ...
متن کاملHard Superconducting Gap in InSb Nanowires
Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material sys...
متن کاملCoexistence of incommensurate magnetism and superconductivity in Fe1+ySexTe1−x
We have studied the superconducting and magnetic properties of Fe1+ySexTe1−x single crystals (0≤x≤0.5) by magnetic susceptibility, muon-spin rotation, and neutron diffraction. We find three regimes of behavior: (i) commensurate magnetic order for x≲0.1, (ii) bulk superconductivity for x∼0.5, and (iii) a range x≈0.25-0.45 in which superconductivity coexists with incommensurate magnetic order. Th...
متن کاملExperimental phase diagram of zero-bias conductance peaks in superconductor/semiconductor nanowire devices
Topological superconductivity is an exotic state of matter characterized by spinless p-wave Cooper pairing of electrons and by Majorana zero modes at the edges. The first signature of topological superconductivity is a robust zero-bias peak in tunneling conductance. We perform tunneling experiments on semiconductor nanowires (InSb) coupled to superconductors (NbTiN) and establish the zero-bias ...
متن کامل